

... for a brighter future

# COAXIAL INPUT RF LOADS







A U.S. Department of Energy laboratory managed by The University of Chicago

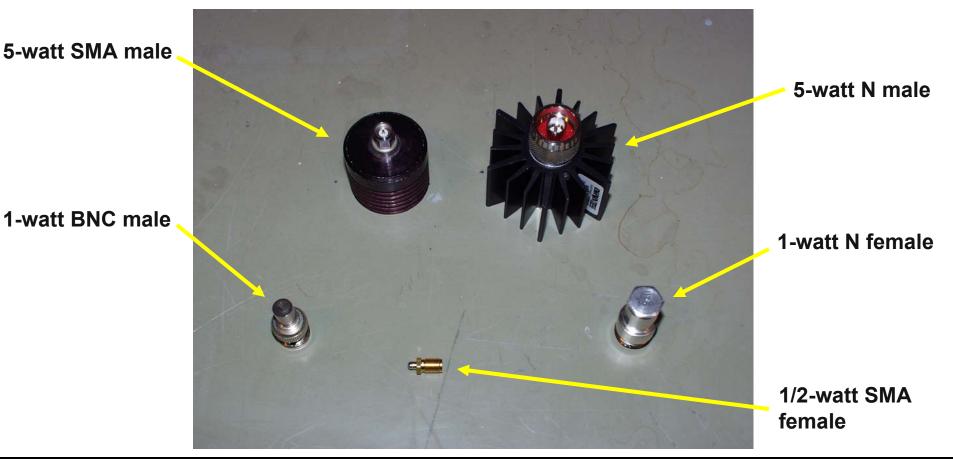
**Doug Horan** 

RF Group Cross-Training Session January 30, 2009

# **Presentation Outline**

- 1. Description of RF load types.
- 2. Details on Altronic Research Water-Cooled RF Loads.
- 3. Details on "CERN" 300kW Water Loads
- 4. Load Replacement Procedure
- 5. Conclusion

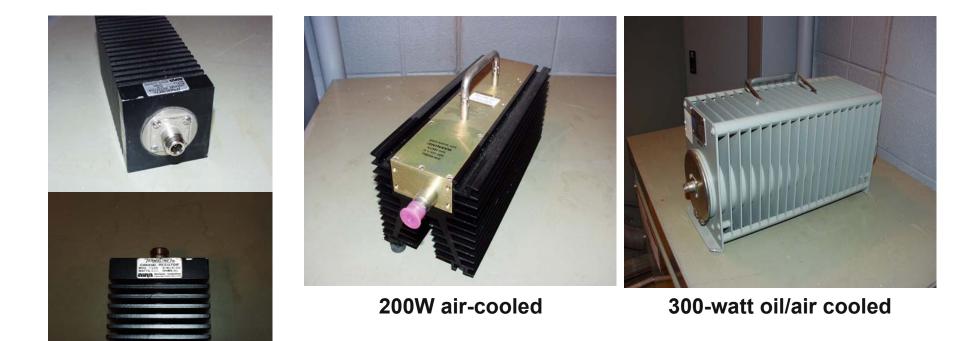



# **RF Load Types**

- RF load designs are determined by *impedance*, *power handling capability*, *cooling method*, and *frequency range*:
- → Power handling capability: 1-watt, 10-20 watt, 100-300 watt, or many kilowatts
- $\rightarrow$  Impedance is typically 50 ohms unless otherwise stated
- → Quality of match can vary from good (typical for "loads") to excellent (typical for precision "terminations")
- → Cooling method could be ambient air, forced air, closed-system oil conduction to air fins, forced water, etc.....it depends on the power levels involved
- → A "broadband" rf load will represent a 50-ohm match with low VSWR over a specified frequency range, but some loads are designed to be a good match at only one frequency



# Low Power RF Loads


- Average power dissipation typically ranges from ½-watt to 5 watts, with various connector options.
- Power is dissipated in resistive material thermally bonded to a heat sink.  $\rightarrow$  will read 50 $\Omega$  with a dc ohmmeter





### **Moderate Power RF Loads**

- Power is dissipated in a resistive material bonded thermally to an aircooled heat sink or immersed in oil that is air-cooled by fins.
  - $\rightarrow$  Will read 50 with a dc ohmmeter



#### 100W air-cooled



# **Beryllium Oxide Warning!**

- Some loads use BeO ceramic internally as a dielectric material because of it's low rf loss and excellent thermal properties.
  - → If the load case is breached or you disassemble the load, do not touch the BeO ceramic material.
  - → Do not abrade the BeO material, or ingest dust from abraded BeO.
  - → In some cases, BeO ceramics are intentionally colored pink for identification.







# **Moderate Power RF Loads**

- 50kW load used as a television transmitter dummy load
  - → 3-1/8" EIA coaxial flange input
  - → Forced-air cooling with circulating coolant -- oil, or glycol-water mixture passed through an internal heat exchanger cooled by fans
  - $\rightarrow$  Will read 50 $\Omega$  with a dc ohmmeter





### **Altronic Research Water-Cooled Loads**

### • Broadband rf loads with EIA coaxial flange terminations:







#### 200kW with 6-1/8" EIA flange





#### 5kW with 1-5/8" EIA flange



# **Altronic Research Water-Cooled Loads**

- RF power is dissipated in a resistive coating that is applied to the surface of a ceramic tube
- → The ends of the ceramic tube are metalized to provide rf contact to the resistive coating
- → The resistive coating is cooled by a very thin laminar water flow confined close to the surface of the resistive coating by a teflon water jacket
- → Cooling water enters through the center of the tube and returns by the laminar path

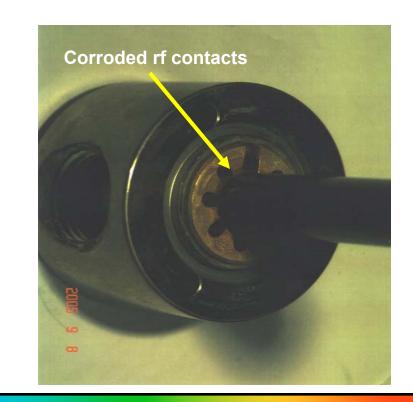


 $\rightarrow$  Broadband – reads 50 $\Omega$  with a dc ohmmeter!



### **Altronic Research Water-Cooled Loads**

• View of rear rf contacts to resistor tube on a 200kW load:






### DI Water Effects on Altronic Research Water-Cooled Loads

- Corrosive effects of high-purity DI water causes erosion of rf contacts by dissolving the metallic contact parts and de-plating the resistor – which will result in arcing at high power!
  - $\rightarrow$  <u>three-year maximum service life</u> between rebuilds in our systems







# **CERN 300kW Water Loads**

- Shorted coaxial line with DI water in dielectric region
  - $\rightarrow$  RF power is dissipated in the cooling water itself
  - → NARROW BAND only a good match at 352 MHz!
  - → Load impedance is approximately 10 ohms a coaxial transformer (tapered center conductor) is used to correct input impedance to 50 ohms → reads 0Ω with a dc ohmmeter!
  - → Very rugged.....but can fail due to arcing at the transformer if input power exceeds 300kW.





Transformer coaxial section and center conductor



Water weep holes in transformer section



# **Care and Feeding of Coaxial RF Loads**

- Follow guidelines in RF Technical Note on rf load replacement:
  - → CCWP required!
  - → All 352-MHz rf stations must be off and LOTO before load is removed!
  - → 17.5 ft-lbs torque on flange bolts!
  - → Sniff flange for rf leaks after replacement!



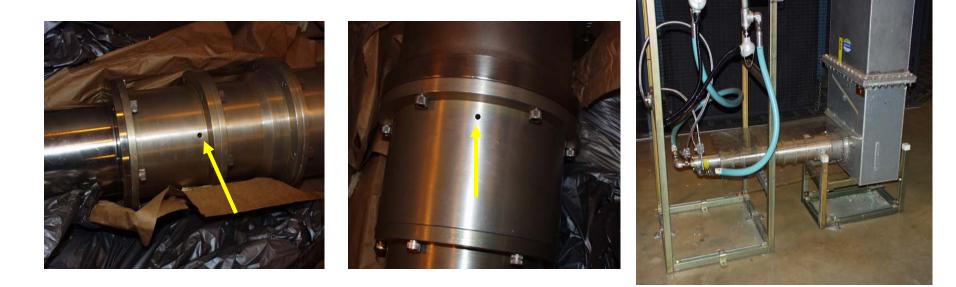
NOTE: Minimum flow on 200kW loads is 19 GPM!



# **Altronic Research 200kW Water-Cooled Loads**

The result of operating full input power *with no coolant flow* and *no functioning interlocks!* 

# OPERATION WITHOUT COOLANT FLOW WILL RESULT IN INSTANTANEOUS LOAD FAILURE








# **Care and Feeding of Coaxial RF Loads**

• In horizontal mounting, orient the load so that weep holes face the floor as best as possible:



